Ring Transformations of Bicyclic Cycloalka[d]- to the Isomeric Cycloalka[c]isothiazolium Salts and their Oxidation to ω-(2-Aryl-1,1,3-trioxo-2,3-dihydro-1H-isothiazol-4-yl)-alkanoic Acids

Antje Noack, Ines Röhlig, and Bärbel Schulze*
Leipzig, Institut für Organische Chemie, Universität

Received June 23rd, 2000
Keywords: Heterocycles, Isomerizations, Oxidations, Hydroperoxides, Sultams, Criegee-rearrangement

Abstract

The synthesis of tetrahydro-2,1-benzisothiazolium salts $\mathbf{8}$ and cyclohepta $[c]$ isothiazolium salts $\mathbf{1 1}$ by ring transformation of bicyclic isothiazolium perchlorates $\mathbf{2 , 3}$ is described and the by-products $\mathbf{9 , 1 0}$ and $\mathbf{1 2}$ are characterized.

Oxidation of the bicyclic salts $\mathbf{8}$ and $\mathbf{1 1}$ results in a new route to obtain- ω-(2-aryl-1,1,3-trioxo-2,3-dihydro- 1 H -isothiazol-4-yl)-alkanoic acids 17 and $\mathbf{1 8}$ by Criegee-type-rearrangement.

In the last years isothiazole 1,1-dioxides have received increased interest as chiral auxiliaries in asymmetric syntheses since Oppolzer's discovery of camphor sultam [1, 2]. Furthermore camphersulfonyl-oxaziridines [3] and oxaziridines of toluene-2, α-sultame type [4, 5] have aquired remarkable importance as asymmetric oxidants. In parallel to our experiments regarding the oxidation of 2-arylisothiazolium salts 2 we found the relation between donor and acceptor functionality on the substituents R and the function of these substituents on stereochemical aspects on the formation of rac-cis/ trans-3-hydroperoxy-4,5,6,7-tetrahydrotoluene-2, α-sultims and sultams, which are oxidizing agents [6, 7]. Recently, we have demonstrated the accessibility of monocyclic chiral 3-alkyl-3-hydroperoxy-sultams and 4-me-thyl-isothiazol-3(2H)-one 1,1-dioxides by oxidation of isothiazolium salts 5 , which is alkyl substituted at the 3 -position. The latter was prepared by a novel ring transformation under sulfur migration of isothiazolium salts 4 [8]. The goal of this paper is to extend the method reported previously [8] in order to obtain bicyclic isothiazolium salts and their oxidation to sultams.

Results

The starting materials, which are the bicyclic isothiazolium salts $\mathbf{1}-\mathbf{3}$, were prepared according to our reported synthesis by cyclocondensation of 2-thiocyanato-cy-cloalkene-1-carbaldehydes with anilines $\mathbf{6 a}-\mathbf{c}$ and perchloric acid [9]. The salts $\mathbf{1}$ and $\mathbf{3}$ are new compounds and were firstly synthesized in our laboratory.

Scheme 1 Ring opening of bicyclic salts $\mathbf{1 a}-\mathbf{c}$ with anilines $\mathbf{6 a - c}$ to vinamidines 7a-c

The isothiazolium salts $\mathbf{1 - 3}$ possess the capability to react with the substituted anilines $\mathbf{6 a}-\mathbf{c}$ in order to prepare the isomeric isothiazolium salts by ring transformation. Depending on the ring size of the isothiazolium salts $\mathbf{1}-\mathbf{3}$ different products were obtained in the reaction mixture (scheme 1-3). Several substituents were chosen ($\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{Cl}$) for examination of the influence between electron-donating and electron-withdrawing substituents.

Because 2-aryl-5,6-dihydro-4H-cyclopenta[d] isothiazolium perchlorates $\mathbf{1}(\mathrm{n}=1)$ are allowed to react with substituted anilines $\mathbf{6 a - c}$ in methanol, vinamidines $7 \mathbf{a}-$ c can be easily obtained in quantitative yield (95-99\%) as the main product in a sufficient purity (scheme 1). Vinamidines are formed by reaction of 2-chloro-cy-clopentene-1-carbaldehyd and anilines according to previous reported procedures [10, 11].

Isomerization of 2-aryl-4,5,6,7-tetrahydro-1,2-benzisothiazolium perchlorates $\mathbf{2 a}-\mathbf{c}(\mathrm{n}=2)$ results in 1-aryl-4,5,6,7-tetrahydro-2,1-benzisothiazolium perchlorates $\mathbf{8 a}-\mathbf{c}$ while the vinamidines $\mathbf{1 0 a}-\mathbf{c}(5-13 \%)$ and spirocyclic salts $9 \mathbf{a}-\mathbf{c}(5-31 \%)$ are only by-products (scheme 2).

Scheme 2 Isomerization of 4,5,6,7-tetrahydro-1,2-benzisothiazolium perchlorates $\mathbf{2 a}-\mathbf{c}$ to 1 -aryl-2,1-benzisothiazolium salts $\mathbf{8 a}-\mathbf{c}$, spirocyclic salts $\mathbf{9 a}-\mathbf{c}$ and vinamidines $\mathbf{1 0 a}-\mathbf{c}$

The substituent R at the aryl position importantly influences the isomerization yield. Thus, it was shown that by use of unsubstituted as well as electron-donating anilines $\mathbf{6 a}, \mathbf{b}\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}\right)$ reasonable yields of isomeric salts $\mathbf{8 a}, \mathbf{b}$ could be obtained ($33-64 \%$). On the other hand the use of electron-withdrawing substituted 4 -chloro-aniline $\mathbf{6 c}$ only results in traces of the isomeric salt $8 \mathbf{c}(2 \%)$, which was confirmed in the reaction mixture by NMR spectroscopy. This tendency excellently correlates with the results we previously reported for isomerization of monocyclic isothiazolium salts [8].

In comparison to these results the ring transformation works well for the 2-aryl-5,6,7,8-tetrahydro- 4 H cyclohepta $[d]$ isothiazolium perchlorates $\mathbf{3 a}-\mathbf{c}(\mathrm{n}=3)$. The isomeric cyclohepta $[c]$ isothiazolium perchlorates $\mathbf{1 1 a}, \mathbf{b}$ are the main products while spirocyclic salts $\mathbf{1 2 a}$ c are found in significant lower yields as by-products ($1-8 \%$) (scheme 3). In contrast to the former mentioned results of isomerization the reaction mixture contained no vinamidines in our experiments. The substituent R at the aryl position responsibly influences the yields of 11a-c in the same direction as observed for reaction of the salts $\mathbf{2 a}-\mathbf{c}$. Thus the products $\mathbf{1 1 a}, \mathbf{b}\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}\right)$ are obtained in excellent yields ($81-89 \%$), whereas the acceptor substituted salt $11 \mathrm{c}(\mathrm{R}=\mathrm{Cl})$ is only formed in poor yield (4\%). 11c was not isolated but detected by spectroscopic methods.

Scheme 3 Isomerization of cyclohepta[d]isothiazolium perchlorates $\mathbf{3 a}-\mathbf{c}$ to the bicyclic salts $11 \mathbf{a}-\mathbf{c}$ and spiro salts 12a-c

The mechanism of the ring transformation can be explained by a nucleophilic attack of aniline at the carbon atom in 5-position of 2 and 3. Sulfur migration and a subsequent ring closure results in $\mathbf{8}$ and $\mathbf{1 1}$ [8]. Vinamidines $\mathbf{1 0}$ are obtained as by-products, which are attributed to a loss of sulfur from either the salts 2 or an intermediate. Vinamidines $7 \mathbf{a}-\mathbf{c}$ are the main-products ($98-99 \%$) in the case of reaction of $\mathbf{1 a}-\mathbf{c}$ with anilines $\mathbf{6 a}-\mathbf{c}$. Spirocyclic salts rac-cis- $\mathbf{9}$ are known as the reaction products of an dimerization bet-ween two molecules of the isothiazolium salts 2 in the presence of a base [12]. Therefore, the reaction of salts $\mathbf{2 , 3}$ with anilines 6 leads in the same time to spiro salts 9,12 by dimerization as a side-reaction.

The structures of all compounds prepared are confirmed by their spectroscopic data and elemental analysis. The isomeric salts $\mathbf{8}$ and $\mathbf{1 1}$ exhibit characteristic
signals at about 9,27-9,35 ppm, 2,86-2,95 ppm and $2,74-2,83 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR spectra. The first set of signals can be attributed to the proton in 3-position of the isothiazole ring, the second and third one to the methylene groups of the cycloalkene ring. A characteristic feature of the salts $\mathbf{8}, \mathbf{1 1}$ are the ${ }^{13} \mathrm{C}$ NMR signals of the isothiazole moiety at $168-173 \mathrm{ppm}$ (C-5), 150$151 \mathrm{ppm}(\mathrm{CH}-3)$ and $132-134 \mathrm{ppm}(\mathrm{C}-4)$. In the IR spectra of $\mathbf{8}, \mathbf{1 1}$ the characteristic signals of the $\mathrm{O}-\mathrm{Cl}-$ O absorption bands is found as a intense signal at about $1090-1117 \mathrm{~cm}^{-1}$. Electrospray ionization mass spectra which are taken from $\mathbf{1 a}, \mathbf{3 b}$ and $\mathbf{8 b}$, show the expected molecular ion peaks of the cations.

The vinamidines $\mathbf{7}$ and $\mathbf{1 0}$ exhibit characteristic signals in ${ }^{1} \mathrm{H}$ NMR spectra at $11,60 \mathrm{ppm}(\mathrm{NH}), 10,60 \mathrm{ppm}$ (NH) and $8,90 \mathrm{ppm}(\mathrm{CH}=\mathrm{N})$, whereas the spirocyclic salts 9,12 can be identified by their typical ${ }^{1} \mathrm{H}$ NMR signals at $9,30 \mathrm{ppm}\left(3^{\prime}-\mathrm{H}\right)$, and two doublets at $4,40 \mathrm{ppm}(3-\mathrm{H})$ and $5,80 \mathrm{ppm}(\mathrm{NH})$. The typical signals in the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 2}$ are $66,8 \mathrm{ppm}$ for C $2 / 8^{\prime}$, a doublet of the $\mathrm{C}-3$ atoms at 82 ppm and a further one of the $\mathrm{C}-3$ ' at 153 ppm .

The isomeric isothiazolium salts $\mathbf{8 a}, \mathbf{b}$ and $\mathbf{1 1 a}, \mathbf{b}$ are valuable starting compounds for the preparation of bicyclic 3-hydroperoxy-isothiazole-1,1-dioxides 13, 14. The oxidation of the mentioned salts was performed by heating the salts $\mathbf{8}, \mathbf{1 1}$ in acetic acid with an excess of hydrogen peroxide (30\%) for several hours. Surprisingly ω-(2-aryl-1,1,3-trioxo-2,3-dihydro-1H-isothiazol-4-yl)alkanoic acids $\mathbf{1 7 a}, \mathbf{b}, \mathbf{1 8} \mathbf{a}, \mathbf{b}$ are isolated as products in mostly good yields ($38-43 \%$). The formation of these

Scheme 4 Oxidation of bicyclic isothiazolium salts 8 and 11 via instable hydroperoxides $\mathbf{1 3}, \mathbf{1 4}$ to ω-(2-aryl-1,1,3-trioxo-2,3-dihydro-1H-isothiazol-4-yl)-alkanoic acids 17, 18
carboxylic acids $\mathbf{1 7}, \mathbf{1 8}$ can be attributed to a criegeetype rearrangement of initially formed hydroperoxides 13, 14 followed by a subsequent oxidation of the nonisolable alkanols obtained 15, 16 (scheme 4). Only in one case the hydroperoxid 13a could be isolated in low yield (2%) by applying slight oxidation conditions at low temperature.

The structure of ω-(2-aryl-1,1,3-trioxo-2,3-dihydro$1 H$-isothiazol-4-yl)-alkanoic acids 17a,b, 18a,b follows from the spectroscopic data. Thus, characteristic signals at 1182-1185 cm^{-1}, 1327-1334 cm^{-1}, 1705$1713 \mathrm{~cm}^{-1}$, and $1730-1740 \mathrm{~cm}^{-1}$ were found in the IR spectra. Whereas the first and second set of signals are related to the symmetrical and asymmetrical $\mathrm{SO}_{2} \mathrm{ab}$ sorption of the SO_{2} moiety, the third one can be attributed to the carboxyl group and the last one to the carbonyl group. Another typical signals of this compounds are found in the ${ }^{13} \mathrm{C}$ NMR at $178-179 \mathrm{ppm}(\mathrm{COOH})$ and at 160-161 ppm $(\mathrm{C}=\mathrm{O})$. Additionally, the structure of these compounds is confirmed by mass spectroscopic analysis, where a molecular ion peak with high intensity was found. The comparison of various spectroscopic data of the sultams 17 and $\mathbf{1 8}$ with those of typical isothiazole-3(2H) on 1,1-dioxides supports the structure of $\mathbf{1 7}$ and 18.

Conclusion

In summary, the bicyclic isothiazolium salts 2 and $\mathbf{3}$ react with anilines $\mathbf{6}$ to form isomeric salts $\mathbf{8}$ and 11. Byproducts are spirocyclic salts rac-cis $\mathbf{9}$ and rac-cis-12 and vinamidines $\mathbf{1 0 a}-\mathbf{c}$. In the case of salts $\mathbf{1}$ only ring opening products, the vinamidines $7 \mathbf{a}-\mathbf{c}$, are obtained. Furthermore a new efficient route to alkanoic acids $\mathbf{1 7}$ and 18 has been found through oxidation of the bicyclic salts $\mathbf{8}$ and 11.

Experimental

IR: ATI Mattson Genesis Series FTIR.Analytical System. UV/Vis: Beckmann DU 650 Spectrophotometer. - NMR: Varian Unity 400 Spectrometer; TMS internal standard. - Elemental analysis: Heareus-CHN-O-S-Rapid-Analyser. - MS: VG-12-250 of Analytical Instruments Manchester. - Melting points were determined on a Boetius micro melting point apparatus and have been corrected.

Bicyclic 2-Aryl-cycloalka[d]isothiazolium Perchlorates 13 (General Procedure)
The salts $\mathbf{1}-\mathbf{3}$ were prepared according ref. [9]. The isothiazolium perchlorates $\mathbf{2 a}-\mathbf{c}$ were described in [9, 12].
2-Phenyl-5,6-dihydro-4H-cyclopenta[d]isothiazolium perchlorate (1a)
Yield 92%; m.p. $155-158{ }^{\circ} \mathrm{C}$ (ethanol) beige crystals. - IR
$(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=1096 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max } / \mathrm{nm}$ $(\lg \varepsilon)=224.5$ (3.78); 247.0 (3.72); 297.0 (3.94). $-{ }^{1} \mathrm{H}$ NMR (DMSO-d $)_{6}$): $\delta / \mathrm{ppm}=9.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.81-7.76(\mathrm{~m}$, $2 \mathrm{H}, o-\mathrm{H}) ; 7.68-7.63(\mathrm{~m}, 3 \mathrm{H}, \mathrm{m} / \mathrm{p}-\mathrm{H}) ; 3.32\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.97$ (t, 2H, CH2); 2.47 (q, 2H, CH2). - ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=178.2(\mathrm{C}-6 \mathrm{a}) ; 151.5(\mathrm{C}-3) ; 144.7(\mathrm{C}-3 \mathrm{a}) ; 138.5(i-$ C); 131.8 ($p-\mathrm{CH}$); 131.4 ($m-\mathrm{CH}$); 124.4 ($o-\mathrm{CH}) ; 33.6 ; 29.0$; $27.3\left(3 \mathrm{CH}_{2}\right)$.
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{4} \mathrm{~S}$ Calcd.: C 47.76 H 4.01 N 4.64 S 10.63 (301.73) Found: C 47.75 H 4.14 N 4.71 S 10.44.

2-(4-Methylphenyl)-5,6-dihydro-4H-cyclopenta[d]isothiazolium perchlorate (1b)
Yield 31%; m.p. $139-141{ }^{\circ} \mathrm{C}$ (ethanol) beige crystals. - IR $(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=1119 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}$ (ethanol): $\lambda_{\text {max }} / \mathrm{nm}$ $(\lg \varepsilon)=218.0$ (3.95); 254.0 (3.76); 305.5 (4.01).
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{4} \mathrm{~S}$ (315.75).

2-(4-Chlorphenyl)-5,6-dihydro-4H-cyclopenta[d]isothiazolium perchlorate (1c)

Yield 41%; m.p. $115-120^{\circ} \mathrm{C}$ (ethanol), beige crystals. - IR $(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1112 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}$ (ethanol): $\lambda_{\max } / \mathrm{nm}$ $(\lg \varepsilon)=222.5$ (3.93); 253.0 (3.69); 303.5 (9.91).
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{~S}$ (336.17).
2-Phenyl-5,6,7,8-tetrahydro-4H-cyclohepta[d]isothiazolium perchlorate (3a)
Yield 98\%; m.p. 204-206 ${ }^{\circ} \mathrm{C}$ (ethanol) colorless crystals. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=1100 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}$ (ethanol): $\lambda_{\text {max }} / \mathrm{nm}(\lg \varepsilon)=253.5$ (3.85); 296.5 (3.98). $-{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=9.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.81(\mathrm{~m}, 2 \mathrm{H}, o-$ $\mathrm{H}) ; 7.67(\mathrm{~m}, 3 \mathrm{H}, m / p-\mathrm{H}) ; 3.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.92\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; $1.89\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right) ; 1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C} \mathrm{NMR}$ (DMSO$\left.\mathrm{d}_{6}\right): \delta / \mathrm{ppm}=174.2(\mathrm{C}-8 \mathrm{a}) ; 156.7(\mathrm{C}-3) ; 141.2(\mathrm{C}-3 \mathrm{a}) ; 137.6$ (i-C); 132.0 ($p-\mathrm{CH}$); 131.5 ($m-\mathrm{CH}$); 124.1 ($o-\mathrm{CH}) ; 31.8 ; 28.5$; 27.9; 27.1; $26.9\left(5 \mathrm{CH}_{2}\right)$.
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{4} \mathrm{~S}$ Calcd.: C 50.99 H 4.89 N 4.25 S 9.72
(329.81) Found: C 50.51 H 4.77 N 4.15 S 9.81.

2-(4-Methylphenyl)-5,6,7,8-tetrahydro-4H-cyclohepta[d] isothiazolium perchlorate (3b)
Yield 85%; m.p. $150-151^{\circ} \mathrm{C}$ (ethanol) colorless crystals. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=1096 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\text {max }} / \mathrm{nm}(\lg \varepsilon)=201.5$ (4.13), 257.0 (3.71), 302.5 (3.89). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=9.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.72(\mathrm{~d}$, $\left.2 \mathrm{H}, J_{\mathrm{AB}}=8.6 \mathrm{~Hz}, o-\mathrm{H}\right) ; 7.50\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{AB}}=8.6 \mathrm{~Hz}, m-\mathrm{H}\right) ; 3.35$ (t, 2H, CH $)_{2}$); $2.94\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.93(\mathrm{~m}$, $2 \mathrm{H} ; \mathrm{CH}_{2}$); $1.73\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=172.9(\mathrm{C}-8 \mathrm{a}) ; 155.8(\mathrm{C}-3) ; 137.1$ (C-3a); 142.7 ($p-$ C); 123.4 ($o-\mathrm{CH}$); 131.7 ($\mathrm{m}-\mathrm{CH}$); 134.3 (i-C); 31.2; 27.8; 27.2; 26.5; 26.3; $\left(5 \mathrm{CH}_{2}\right) ; 20.9\left(p-\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNO}_{4} \mathrm{~S}$ Calcd.: C 52.40 H 5.28 N 4.07 S 8.32 (343.80) Found: C 52.30 H 5.18 N 4.06 S 8.79.

2-(4-Chlorphenyl)-5,6,7,8-tetrahydro-4H-cyclohepta[d]isothiazolium perchlorate (3c)
Yield 67\%; m.p. $128-129^{\circ} \mathrm{C}$ (ethanol)colorless crystals. IR (KBr): $v / \mathrm{cm}^{-1}=1090 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\mathrm{ma}} / \mathrm{nm}(\log \varepsilon)=217.5$ (4.14), 254,0 (3.88), 296.1 (4.01). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=9.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.84(\mathrm{~d}$, $\left.2 \mathrm{H}, J_{\mathrm{AB}}=9.0 \mathrm{~Hz}, o-\mathrm{H}\right) ; 7.76\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{AB}}=9.0 \mathrm{~Hz}, m-\mathrm{H}\right) ; 3.34$ (t, 2H, CH 2); $2.91\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.88\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right) ; 1.69(\mathrm{~m}$,
$4 \mathrm{H}, 2 \mathrm{CH}_{2}$).
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{~S}$ Calcd.: C 46.16 H 4.15 N 3.85 S 8.80 (364.22) Found: C 45.95 H 4.25 N 3.79 S 8.68.

Isomeric Bicyclic 1-Aryl-cycloalka[c]isothiazolium Perchlorates 8a,b and 11a,b (General Procedure)

The isomeric isothiazolium salts $\mathbf{8}$ and $\mathbf{1 1}$ were prepared according ref. [8]. 3 mmol 2 -aryl-isothiazolium perchlorate 2 or $\mathbf{3}$ and 3 mmol aniline $\mathbf{4}$ were dissolved by stirring and gentle heating in 30 ml methanol. The reaction mixture is stirred at $50^{\circ} \mathrm{C}$ for 8 hours, while the by-products $\mathbf{9}$ and $\mathbf{1 2}$ are precipitated as a yellow powder, which can be separated. After removing the solvent up to $4-6 \mathrm{ml}, 25-30 \mathrm{ml}$ of ether are carefully added. After scratching and standing at $0-5^{\circ} \mathrm{C}$ the perchlorates $\mathbf{8}$ and $\mathbf{1 1}$ are precipitated as microcrystallin powders, which are filtered off, washed with ether and purified by recrystallization from ethanol/ether. The remaining solution contains the vinamidines $\mathbf{7}$ and $\mathbf{1 0}$.

1-Phenyl-4,5,6,7-tetrahydro-2,1-benzisothiazolium perchlorate ($\mathbf{8 a}$)
Yield 33\%; m.p. 185-188 ${ }^{\circ} \mathrm{C}$ (ethanol/ether) beige needles. $-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1090 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=242.0$ (4.09); 302.0 (3.78). $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right): \delta / \mathrm{ppm}=9.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.71-7.70(\mathrm{~m}$, $5 \mathrm{H}) ; 2.86\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$. $-{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=168.5(\mathrm{C}-7 \mathrm{a}) ; 150.9(\mathrm{C}-3)$; 134.9 (i-C); 133.7 (C-3a); 131.5 ($p-\mathrm{CH}$); 130.2 ($m-\mathrm{CH}$); 126.6 (o-CH); 26.8; 24.2; 20.7; $20.6\left(4 \mathrm{CH}_{2}\right)$.
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{4} \mathrm{~S}$ Calcd.: C 49.45 H 4.47 N 4.44 S 10.15 (315.77) Found: C 49.61 H 4.40 N 4.50 S 10.46.

1-(4-Methylphenyl)-4,5,6,7-tetrahydro-2,1-benzisothiazolium perchlorate ($\mathbf{(8 b}$)
Yield 64\%; m.p. 197-199 ${ }^{\circ} \mathrm{C}$ (ethanol/ether) yellow needles. $-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1100 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=243.0$ (4.20), 308.5 (3.85). $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta / \mathrm{ppm}=9.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.71\left(\mathrm{~d}, J_{\mathrm{AB}}=8,3\right.$ $\mathrm{Hz}, o-\mathrm{H}) ; 7.22\left(\mathrm{~d}, J_{\mathrm{AB}}=8,3 \mathrm{~Hz}, m-\mathrm{H}\right) ; 2.86\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.74$ $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.32\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right) ; 1.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$.
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{4} \mathrm{~S}$ Calcd.: C 50.99 H 4.89 N 4.25 S 9.72 (329.78) Found: C 50.79 H 4.75 N 4.09 S 9.84.

1-Phenyl-5,6,8,7-tetrahydro-4H-cyclohepta[c]-isothiazolium perchlorate (11a)
Yield 81%; m.p. $162-165^{\circ} \mathrm{C}$ (ethanol/ether) yellow powder. - IR (KBr): $v / \mathrm{cm}^{-1}=1092 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }} /$ $\mathrm{nm}(\lg \varepsilon)=209,0 . \mathrm{nm}(3.82) ; 272.5$ (3.80). - ${ }^{1}$ H NMR (DMSO$\left.\mathrm{d}_{6}\right): \delta / \mathrm{ppm}=9.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.71-7.69(\mathrm{~m}, 5 \mathrm{H}) ; 2.95$ (t, 2H, CH 2); $2.83\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.69(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$). - ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=172.7(\mathrm{C}-8 \mathrm{a})$; 150.1 (C-3); 139.3 (i-C); 134.9 (C-3a); 131.7 (p-CH); 130. ($m-\mathrm{CH}$); 127.1 (o-CH); 30.7; 30.2; 28.3; 26.5; $24.3\left(5 \mathrm{CH}_{2}\right)$. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{4} \mathrm{~S}$ Calcd.: C 50.99 H 4.89 N 4.25 S 9.72 (329.78) Found: C 50.61 H 4.87 N 4.41 S 9.94.

1-(4-Methylphenyl)-5,6,7,8-tetrahydro-4H-cyclohepta[c]isothiazolium perchlorate (11b)
Yield 89%; m.p. $112-114{ }^{\circ} \mathrm{C}$ (ethanol/ether) yellow powder. $-\mathrm{IR}(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=1117 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max } /$ $\mathrm{nm}(\lg \varepsilon)=270.0(4,01) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta / \mathrm{ppm}=$
$9.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.60\left(\mathrm{~d}, J_{\mathrm{AB}}=8,4 \mathrm{~Hz}, o-\mathrm{H}\right) ; 7.50\left(\mathrm{~d}, J_{\mathrm{AB}}\right.$ $=8,4 \mathrm{~Hz}, m-\mathrm{H}) ; 2.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.85\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.44(\mathrm{~s}$, $\left.3 \mathrm{H}, p-\mathrm{CH}_{3}\right) ; 1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{2}$): $\delta / \mathrm{ppm}=172.9(\mathrm{C}-8 \mathrm{a}) ; 150.1(\mathrm{C}-3) ; 139.5$ (i-C); 132.7 (C-3a); 142.1 ($p-\mathrm{C}$); 130.8 ($\mathrm{m}-\mathrm{CH}$); 127.0 ($o-$ CH); 30.9; 30.4; 28.6; 26.7; $24.6\left(5 \mathrm{CH}_{2}\right) ; 21.0\left(p-\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNO}_{4} \mathrm{~S}$ Calcd.: C 52.40 H 5.28 N 4.07 S 8.32 (343.80) Found: C 52.30 H 5.18 N 4.06 S 8.79.

(2-Arylamino-cycloalkenylmethylen)-aryl-ammonium Perchlorates 7a-c, 10a-c

The vinamidines $7 \mathbf{a}-\mathbf{c}$ are the main products of the reaction of the perchlorates $\mathbf{1 a}-\mathbf{c}$ with substituted anilines $\mathbf{6 a}-\mathbf{c}$. The vinamidines $10 \mathbf{a}-\mathbf{c}$ are obtained as by-products at the synthesis of the salts $\mathbf{8 a}-\mathbf{c}$. The vinamidines $7 \mathbf{a}$ and $10 \mathbf{a}$ are described in ref. [10] as chlorides.
(2-Phenylamino-cyclopent-1-enylmethylen)-phenyl-ammonium perchlorate (7a)
Yield 98%; m.p. $220-222^{\circ} \mathrm{C}$ (ethanol) yellow crystals. - IR $(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1111 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }} / \mathrm{nm}$ $(\lg \varepsilon)=243.5$ (4.01); 398.0 (4.45).
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4}$ Calcd.: C 59.59 H 5.28 N 7.72 Cl 9.77 (362.80) Found: C 59.42 H 5.19 N 7.84 Cl 9.68.

4-Methylphenyl-[2-(4-methylphenylamino)-cyclopent-1-enylmethylen]-ammonium perchlorate (7b)
Yield 95%; m.p. $195-198{ }^{\circ} \mathrm{C}$ (ethanol) yellow crystals. IR (KBr): $v / \mathrm{cm}^{-1}=1114 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=245.5$ (4.10); 405.0 (4.59). - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\text {m }}\right): \delta / \mathrm{ppm}=11.63(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) ; 10.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$; 8.98 (d, 1H, CH=N); 7.42-7.28 (m, 8H, arom.); 2.91 (t, 2H, CH_{2}); 2.69 (t, 2H, CH2); 2.36 (s, 3H, $p-\mathrm{CH}_{3}$); 2.33 (s, $3 \mathrm{H}, p-$ $\left.\mathrm{CH}_{3}\right) ; 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}\right): \delta / \mathrm{ppm}=$ 179.2 (C-2); 144.3 (C-1'); 137.5; 137.3; 135.6; 135.2; 130.4; 130.3; 129.9; 118.1; 106.6 (C-1); 28.9; 28.8; 27.3.
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4}$ Calcd.: C 61.45 H 5.93 N 7.17 Cl 9.07 (390.85) Found: C 61.34 H 5.80 N 7.10 Cl 8.91.

4-Chlorphenyl-[2-(4-chlorphenylamino)-cyclopent-1-enyl-methylenJ-ammonium perchlorate (7c)
Yield 46%; m.p. $213-216{ }^{\circ} \mathrm{C}$ (ethanol) yellow crystals. IR (KBr): $v / \mathrm{cm}^{-1}=1096 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\text {max }} / \mathrm{nm}(\lg \varepsilon)=246.0$ (4.20); 405.5 (4.63).
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ Calcd.: C 50.07 H 3.97 N 6.48 Cl 24.64 (431.70)

Found: C 50.91 H 3.72 N 6.63 Cl 24.44.
(2-Phenylamino-cyclohex-1-enylmethylen)-phenyl-ammonium perchlorate (10a)
Yield 13%; m.p. $143-145{ }^{\circ} \mathrm{C}$ (ethanol) yellow crystals. IR (KBr): $v / \mathrm{cm}^{-1}=1111 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=243.5$ (4.20); 400.0 (4.58). - ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=11.79(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) ; 10.60(\mathrm{~d}, 1 \mathrm{H} \mathrm{NH})$; 8.78 (d, 1H, CH=N); 7.63-7.21 (m, 10H, arom.); 2.63 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}: \delta / \mathrm{ppm}=174.5(\mathrm{C}-2) ; 147.6(\mathrm{C}-1$ '); 139.7; 136.9; 129.5; 129.4; 127.7; 125.6; 125.5; 118.4; 103.4; 29.9; 23.6, 21.6; 20.9; $\left(4 \mathrm{CH}_{2}\right)$.
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$ Calcd.: C 60.55 H 5.61 N 7.43 Cl 9.40 (376.83) Found: C 60.75 H 5.73 N 7.21 Cl 9.32.

4-Methylphenyl-[2-(4'-methylphenylamino)-cyclohex-1-enyl-methylen)-ammonium perchlorate (10b)
Yield 11%; m.p. $153-154{ }^{\circ} \mathrm{C}$ (ethanol) yellow crystals. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=1135 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=246.0$ (4.14); 405.0 (4.56). - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}\right): \delta / \mathrm{ppm}=11.35(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) ; 10.38(\mathrm{~d}, 1 \mathrm{H} \mathrm{NH})$; 8.57 (d, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$); 7.40-7.16 (m, 8H, arom.); $2.50(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}); $2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR (DMSO-d $6: \delta / \mathrm{ppm}=174.1(\mathrm{C}-2) ; 147.2(\mathrm{C}-1$ '); 137.4; 137.3; 134.9; 129.9; 129.8; 125.5; 118.2; 102.8; 29.8; 23.5, 21.6; 20.9; $\left(4 \mathrm{CH}_{2}\right)$; $20.6\left(p-\mathrm{CH}_{3}\right) ; 20.4\left(p-\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$ Calcd.: C 62.29 H 6.22 N 6.92 Cl 8.75 (445.73) Found: C 62.15 H 6.35 N 6.71 Cl 8.61.

4-Chlorphenyl-[2-(4'-chlorphenylamino)-cyclohex-1-enyl-methylen)-ammonium perchlorate (10c)
Yield 5\%; m.p. $167-168{ }^{\circ} \mathrm{C}$ (ethanol) orange crystals. IR (KBr): $\mathrm{v} / \mathrm{cm}^{-1}=1114 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=245.5$ (4.30); 400.5 (4.35). - ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta / \mathrm{ppm}=11.55(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) ; 10.57(\mathrm{~d}, 1 \mathrm{H} \mathrm{NH})$; $8.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.58-7.13(\mathrm{~m}, 8 \mathrm{H}$, arom.) ; $2.63(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ; 2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$: $\delta / \mathrm{ppm}=175.3(\mathrm{C}-2) ; 147.47\left(\mathrm{C}-1^{2}\right) ; 138.6 ; 135.7$; 129.5; 129.4; 127.4; 122.2; 119.9; 117.2; 104.2; 29.8; 23.6, 21.6; 20.9; $\left(4 \mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{3}\right)$; $20.4\left(\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ Calcd.: C 51.19 H 4.29 N 6.28 Cl 23.86 (445.73) Found: C 51.23 H 4.17 N 6.31 Cl 23.99.

Spirocyclic Isothiazolium Perchlorates 9a-c, 12a-c (General Procedure)

The spirocyclic isothiazolium perchlorates $9 \mathbf{a}-\mathbf{c}$ and $\mathbf{1 2 a}-\mathbf{c}$ are obtained as by-products at the synthesis of the isomeric salts $\mathbf{8 a}-\mathbf{c}, 11 \mathbf{a}-\mathbf{c}(\operatorname{method} A)$. Otherwise these compounds are available by dimerization of $\mathbf{2 a}-\mathbf{c}$ and $\mathbf{3 a}-\mathbf{c}($ method $B)$, see ref [12]. 9a-c are described (method B) in [12].

Method B: 0.4 mmol of isothiazolium perchlorate $\mathbf{3 a}-\mathbf{c}$ were dissolved in 1.8 ml methanol by stirring and heating on a water bath $\left(70^{\circ} \mathrm{C}\right)$. To the warm reaction mixture 3 drops of dicyclohexylamine were slowly added, while the clear solution is becoming red. The reaction mixture is stirred on the water bath for $2-5$ minutes. After this another 2 drops of dicyclohexylamine are added and the reaction mixture is stirred at room temperature, until the perchlorates 12a-c are precipitated as a fluffy, yellow solid. The precipitate is filtered off and washed with ether. Further purification of 12a\mathbf{c} is achieved by recrystallisation from ethanol.

Spiro[3-phenylamino-2,3,5,6,7,8-hexahydro-4H-cyclohepta [b]thiophen-2, $8^{\prime}-2^{\prime}$-phenyl-5', $6^{\prime}, 7^{\prime}, 8^{\prime}$-tetrahydro-4'H-cyclohepta[d]-isothiazolium perchlorate] (12a)
Yield $3 \%(\operatorname{method} \mathrm{~A}) ; 50 \%(\operatorname{method} \mathrm{~B}) ;$ m.p. $172-177^{\circ} \mathrm{C}$ (ethanol). - IR (KBr): $v / \mathrm{cm}^{-1}=1089 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }} / \mathrm{nm}(\lg \varepsilon)=242.0$ (4.21); 300.5 (3.87). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=8.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.55-7.10$ (m, 10H, arom.); 5.78 (d, 1H, NH); 4.38 (d, 1H, 3-H); 3.21 (m, 2H, CH2); 2.75 (t, 2H, CH2); 2.49 (t, 2H, CH 2); 2.61$1.43\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=168.9$ (C-8'a); 153.4 (C-3'); 142.7; 139.2; 137.4; 137.1; 130.8; 130.5; 130.1; 124.9; 123.8; 123.6, 121.2; 82.2 (C-3); 66.7(C-2/8');
37.8; 31.1; 30.2; 29.2; 28.9; 27.7; 26.8; 26.4; $25.1\left(9 \mathrm{CH}_{2}\right)$. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ Calcd.: C 60.15 H 5.59 N 5.01 S 11.47 (559.14) Found: C 59.84 H 5.40 N 5.25 S 12.08.

Spiro[3-(4-methylphenyl)-2,3,5,6,7,8-hexahydro-4H-cyclo-hepta[b]thiophen-2, 8'-2'-(4-methylphenyl)-5',6',7',8'-tetrahy-dro-4'H-cyclohepta[d]-isothiazolium perchlorate] (12b)
Yield 8% (method A); 58\% (method B); m.p. $187-190^{\circ} \mathrm{C}$ (ethanol). - IR (KBr): $v / \mathrm{cm}^{-1}=1097 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=243.5$ (4.24); 304.5 (3.88).
$\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ Calcd.: C 61.36 H 6.01 N 4.77 S 10.92 (587.18) Found: C 61.24 H 6.15 N 4.51 S 10.81.

Spiro[3-(4-chlorphenylamino)-2,3,5,6,7,8-hexahydro-4H-cyclohepta[b]thiophen-2, 8'-2'-(4-chlorphenyl)-5', $6^{\prime}, 7^{\prime}, 8^{\prime}$-tet-rahydro-4'H-cyclohepta[d]-isothiazolium perchlorate] (12c)
Yield 1% (method A); 35\% (method B); m.p. $178-179{ }^{\circ} \mathrm{C}$ (ethanol). - IR (KBr): $v / \mathrm{cm}^{-1}=1096 \mathrm{~s}(\mathrm{O}-\mathrm{Cl}-\mathrm{O}) .-\mathrm{UV}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }} / \mathrm{nm}(\lg \varepsilon)=246.0$ (4.38); 302.0 (4.03). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 7.51-7.11$ (m, 8 H , arom.); 5.95 (d, 1H, NH); 4.41 (d, 1H, 3-H); 3.11 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.85\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.63-1.42$ $\left(\mathrm{m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=169.5(\mathrm{C}-$ 8'a); 153.3 (C-3'); 141.1; 139.6; 137.5; 137.0; 135.5; 130.4; 130.1; 127.1; 125.4; 125.3, 122.7; 81.9 (C-3); 66.8(C-2/8'); 37.7; 31.1; 30.3; 29.1; 29.0; 27.6; 26.9; 26.2; $25.0\left(9 \mathrm{CH}_{2}\right)$. $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ Calcd.: C 53.55 H 4.65 N 4.46 S 10.21 (628.03) Found: C 53.41 H 4.76 N 4.31 S 10.01.

7a-Hydroperoxy-4,5,6,7-tetrahydrobenzo-1-phenyl-2,3-dihy-dro-isothiazol 1,1-dioxide (13a)

The preparation of hydroperoxid 13a was performed like reported for monocyclic 3-hydroperoxy-isothiazol 1,1-dioxides in [8]. 1 mmol isothiazolium perchlorate 8a is dissolved in 6 ml acetic acid and under stirring 4 ml of hydrogen peroxide is added dropwise at room temperature. The reaction mixture is stirred for 8 h at $50^{\circ} \mathrm{C}$. After removing the solvent at room temperature 13a is obtained as colorless needles, which are filtered of and washed well with distilled water. Yield 2%; m.p. $86-90^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=1166 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1289 \mathrm{~s}$ $\left(\mathrm{SO}_{2}\right)$. UV (ethanol): $\lambda_{\text {max }} / \mathrm{nm}(\lg \varepsilon)=224.5$ (3.73). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.67-7.57(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}) ; 7.47-$ $7.49(\mathrm{~m}, 3 \mathrm{H}, m / p-\mathrm{H}) ; 6.31(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; 2.66\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; 2.27 (t, 2H, CH2), $1.87-1.81\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=139.4(\mathrm{C}-3 \mathrm{a}) ; 131.2(p-\mathrm{CH}), 130.5(m-\mathrm{CH}) ;$ 129.8 (o-CH); 129,6 (i-C); 127(C-3); 108.8 (C-7a); 30.4; 25.4; 24.1; $22.8\left(4 \mathrm{CH}_{2}\right)$. - MS ($\mathrm{m} / \mathrm{z}, \%$ \%): $281\left(\mathrm{M}^{+}, 1\right) ; 263(2) ; 247$ (23); 183 (100); 167 (23); 154 (39); 80 (56); 77 (30); 51 (20). $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ (281.3)

ω-(2-Aryl-1,1,3-trioxo-2,3-dihydro-1H-isothiazol-4-yl)-alkanoic Acids 17a,b , 18a,b (General Procedure)

1 mmol of isothiazolium perchlorate $\mathbf{8 a}, \mathbf{b}, \mathbf{1 1 a}, \mathbf{b}$ is diluted in 6 ml acetic acid by gentle heating. To the stirred solution 4 ml hydrogen peroxide (30%) are added slowly and the reaction mixture is stirred at $70-80^{\circ} \mathrm{C}$ for $6-8$ hours. After removing the solvent the remaining colorless oil is stirred up in distilled water. The alkanoic acids $\mathbf{1 7 a}, \mathbf{b}, \mathbf{1 8 a}, \mathbf{b}$ crystallize after a short standing time as colorless powders, which are filtered off, dried and recrystallized from ethanol.

4-(2-Phenyl-1,1,3-trioxo-2,3-dihydro-1H-isothiazol-4-yl)butanoic acid (17a)
Yield 39\%; m.p. 103-106 ${ }^{\circ} \mathrm{C}$ (ethanol). - IR (KBr): $v / \mathrm{cm}^{-1}=$ $1185 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1327 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1713 \mathrm{~s}(\mathrm{COOH}), 1740 \mathrm{~s}(\mathrm{C}=\mathrm{O})$. UV (ethanol): $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=219.0(4,11) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.50-7.46(\mathrm{~m}, 5 \mathrm{H}$, arom. H$) ; 7.16(\mathrm{~s}, 1 \mathrm{H}$, $5-\mathrm{H}) ; 2.66\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.52\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=178.6(\mathrm{COOH}) ; 160.2(\mathrm{C}=\mathrm{O})$; 144.5 (C-4); 131.8 (C-5)*1), 130.7 ($p-\mathrm{CH})^{*} ; 130.6$ ($m-\mathrm{CH}$); 129.3 (i-C); 128.7 (o-CH); 33.5; 26.0; $22.4\left(3 \mathrm{CH}_{2}\right)$. - MS ($\mathrm{m} / \mathrm{z}, \%$ \%): 295 ($\mathrm{M}^{+}, 100$); 277 (16); 263 (35); 250 (8); 236 (21); 223 (4); 212 (14); 196 (5); 185 (21); 170 (18); 159 (10); 117 (7).
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ Calcd.: C 52.87 H 4.43 N 4.74 S 10.86 (295,3) Found: C 52.71 H 4.54 N 4.85 S 10.63.
4-[2-(4-Methylphenyl)-1,1,3-trioxo-2,3-dihydro-1H-isothia-zol-4-yl]-butanoic acid (17b)
Yield 8%; m.p. $116-120^{\circ} \mathrm{C}$ (ethanol). - IR (KBr): $v / \mathrm{cm}^{-1}=$ $1185 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1330 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1710 \mathrm{~s}(\mathrm{COOH}), 1735 \mathrm{~s}(\mathrm{C}=\mathrm{O})$. UV (ethanol): $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=219.0$ (4.12). $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.30-7.29(\mathrm{~m}, 4 \mathrm{H}$, arom. H$) ; 7.17(\mathrm{~s}, 1 \mathrm{H}$, $5-\mathrm{H}$); 2.64 (t, 2H, CH2); 2.49 (t, 2H, CH2), 2.39 (s, $3 \mathrm{H}, p-$ $\left.\mathrm{CH}_{3}\right) ; 1.98\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=178.8$ $(\mathrm{COOH}) ; 160.4(\mathrm{C}=\mathrm{O}) ; 144.5(\mathrm{C}-4)^{*} ; 140.9(p-\mathrm{C})^{*} ; 131.8$ (C-5); 131.2 ($\mathrm{m}-\mathrm{CH}$); 128.7 (o-CH); 126.4 (i-C); 33.5, 25.9; $22.2\left(3 \mathrm{CH}_{2}\right) ; 22.1\left(p-\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ Calcd.: C 54.36 H 4.89 N 4.53 S 10.37 (309.3) Found: C 54.21 H 4.72 N 4.68 S 10.20.

4-(2-Phenyl-1,1,3-trioxo-2,3-dihydro-1H-isothiazol-4-yl)pentanoic acid (18a)
Yield 38\%; m.p. $143-144^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=1182 \mathrm{~s}$ $\left(\mathrm{SO}_{2}\right), 1333 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1706 \mathrm{~s}(\mathrm{COOH}), 1730 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .-\mathrm{UV}$ (ethanol): $\lambda_{\text {max }} / \mathrm{nm}(\lg \varepsilon)=218,5(3,98) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=7.57-7.42(\mathrm{~m}, 5 \mathrm{H}$, arom. H); $7.17(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) ; 2.59$ (t, 2H, CH 2); $2.44\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=179.5(\mathrm{COOH}) ; 160.6(\mathrm{C}=\mathrm{O})$; 144.9 (C-4); 131.4 (C-5)*; 130.5 ($p-\mathrm{CH})^{*} ; 130.4$ ($m-\mathrm{CH}$); 129.2 (i-C); 128.5 (o-CH); 33.6, 26.4; 26.0; $24.2\left(4 \mathrm{CH}_{2}\right)$. MS ($\mathrm{m} / \mathrm{z}, \%$) $=309\left(\mathrm{M}^{+}, 80\right) ; 291$ (8); 250 (52); 238 (15); 223 (12); 198 (22); 186 (19); 172 (20); 159 (21); 144 (10); 130 (31); 119 (98); 92 (100); 77 (71); 64 (49); 52 (40); 38 (57).
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S} \quad$ Calcd.: C 54.36 H 4.89 N 4.53 S 10.37 $(309,3) \quad$ Found: C 54.48 H 4.66 N 4.75 S 10.15.

4-[2-(4-Methylphenyl)-1,1,3-trioxo-2,3-dihydro-1H-isothia-zol-4-yl]pentanoic acid (18b)
Yield 43\%; m.p. $118-122{ }^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=1184 \mathrm{~s}$ $\left(\mathrm{SO}_{2}\right), 1334 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1705 \mathrm{~s}(\mathrm{COOH}), 1739 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .-\mathrm{UV}$ (ethanol): $\lambda_{\max } / \mathrm{nm}(\lg \varepsilon)=219.5(4,15) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=7.28-7.27(\mathrm{~m}, 4 \mathrm{H}$, arom. H); $7.21(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) ; 2.55$ (t, $2 \mathrm{H}, \mathrm{CH}_{2}$); $2.43\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right) ; 1.70(\mathrm{~m}$, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=179.0(\mathrm{COOH})$; 160.5 (C=O); 145.0 (C-4)*; 140,8 ($p-\mathrm{C}$)*; 131,5 (C-5); 131,6 ($\mathrm{m}-\mathrm{CH}$); 128,6 (o-CH); 124,0 (i-C); 33,8, 26,8; 26.5; 25,1 $\left(4 \mathrm{CH}_{2}\right) ; 21,8\left(p-\mathrm{CH}_{3}\right) .-\mathrm{MS}(\mathrm{m} / \mathrm{z}, \%)=323\left(\mathrm{M}^{+}, 30\right) ; 305$ (2); 291 (48); 264 (11); 250 (5); 226 (5);212 (10); 198 (14); 186 (9); 172 (9); 156 (12); 144 (13); 133 (40); 117 (100); 107

[^0](60); 91 (43); 77 (35); 65 (32); 52 (24); 40 (38).

| $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ | Calcd.: | C 55.72 | H 5.30 | N 4.33 | S 9.92 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (323.3) | Found: | C 55.91 | H 5.43 | N 4.24 | S 9.99. |

References

[1] W. Oppolzer, Tetrahedron 1987, 43, 1969
[2] B. H. Kim, D. P. Curran, Tetrahedron 1993, 49, 293
[3] F. A. Davis, Bang-Chi Chen, Chem. Rev. 1992, 92, 919
[4] F. A. Davis, R. ThimmaReddy, J. P. McCauley Jr., R.M. Przeslawski, M. E. Harakal, P. J. Caroll, J. Org. Chem. 1991, 56, 809
[5] F. A. Davis, J. C. Towsom, D. B. Vashi, R. Reddy, J. P. McCanley, M. E. Harakal, D. J. Gasciniok, J. Org. Chem. 1990, 55, 1254
[6] B. Schulze, S. Kirrbach, K. Illgen, P. Fuhrmann, Tetrahedron 1996, 52, 783
[7] Ch. Hartung, K. Illgen, J. Sieler, B. Schneider, B. Schulze, Helv. Chim. Acta 1999, 82, 685
[8] A. Noack, S. Jelonek, F. B. Somoza Jr., B. Schulze, J. Prakt. Chem. 1998, 340, 361
[9] B. Schulze, U. Obst, G. Zahn, B. Friedrich, R. Cimiraglia, H.-J. Hofmann, J. Prakt. Chem. 1995, 337 , 175
[10] J. M. F. Gagan; D. Lloyd, J. Chem. Soc. (C) 1970, 2488
[11] M. Pulst, M. Weißenfels, Z. Chem. 1976, 16, 337
[12] B. Schulze, B. Friedrich, S. Wagner, P. Fuhrmann, J. Prakt. Chem. 1996, 338, 424

Address for correspondence:
Prof. Dr. B. Schulze
Institut für Organische Chemie
Universität Leipzig
Johannisallee 29
D-04103 Leipzig
Fax: Internat. code (0) 3419736599
e-Mail: bschulze@organik.chemie.uni-leipzig.de

[^0]: ${ }^{1}$) carbon atoms marked with * could be exchanged

